
OpenDSU BluePrint
Architecture

Author: Sînică Alboaie, PhD, Axiologic Research
Purpose: OpenDSU BluePrint Architecture
Visibility: Public
Date: May 2024
Version: 0.1

1. Architecture Blueprint

2. Architectural Pattern: Pull pull-encrypted bricks from partners

2. Internal Data Flows

3. Hosting resources

1. Architecture Blueprint

Diagram 1: Architecture Blueprint

The above diagram presents a generic architecture for an OpenDSU application, illustrating the
intricate interplay of various components integral to its functionality, each labelled from 1 to 8 for clarity.

Component 1, labelled 'System of Records,' represents the core application servers, including
complex Enterprise Resource Planning systems like SAP. These primary organisational data repositories
are crucial for maintaining business operations and records. In some cases, the DSU components are the
'master data,' but in others, the enterprise data source remains in legacy systems.

Moving to component 2, we have the 'Off-Chain Database.' This component is pivotal in storing
data not recorded on the blockchain, offering a complementary data management solution that works with
the blockchain infrastructure.

Component 3, 'DSU Tokenization,' involves importing data into Data Sharing Units (DSUs). This step
is critical for converting organisational data into a format suitable for blockchain integration, ensuring

1

seamless and secure data tokenisation. This component can take different forms, from APIs to enterprise
wallets.

Next, component 4, 'Bricks Storage or Near-Chain,' refers to the OpenDSU storage solution close
to the blockchain. It gives the anchored data blockchain-like properties and is designed for efficient
storage and retrieval, bridging the gap between on-chain and off-chain data environments.

Component 5, 'Cloud-Enclaves for Enterprise Key Management,' highlights the system's
security-enforcing mechanism around cryptography and storage of sensitive data. It involves managing
cryptographic keys in a secure cloud environment, ensuring that data access and transactions are
protected and controlled.

For component 6, we have 'User or Enterprise Wallets.' This component utilises cloud enclaves for
managing digital wallets, essential for transactions and interactions within the blockchain network. It could
also take the form of APIs or OpenDSU digital wallets.

Component 7 is the 'Business Intelligence Component,' an optional yet valuable component that
could provide analytical capabilities. It enables the extraction of insights and intelligence from blockchain
data, enhancing decision-making processes. The

Finally, component 8 emphasises the 'MQs for Communication Between Partners.' This component
is essential for facilitating secure and efficient communication between network participants. It
recommends using Decentralized Identifiers (DIDs), which are secured with verifiable credentials, ensuring
a high level of security and trust in communications.

These components illustrate a blockchain application network's complex and multifaceted nature.
Each plays a specific role in ensuring the system's overall functionality and efficiency.

2

2. Architectural Pattern: Pull pull-encrypted bricks from partners

Diagram 2: Implicit Communication through DSU states

In the above diagram, we present the high-level approach of OpenDSU-based communication,
which is crucial for sharing data about the states of business processes between two partners. This
approach can be generalised to any number of partners. The image exemplifies a generic architecture for
how two entities, each with their operational systems, explain that DSUs are stored in the network and
shared based on cryptographic keys. The main architectural pattern we want to explain is that each
organisation will pull the bricks and reconstruct the DSU locally.

Initially, Partner 1 and Partner 2, utilising systems such as SAP, begin their collaborative or
"choreography" (a decentralised process or flow). Their respective DSU Smart Wallets/Applications act as
intermediaries in this process, skillfully handling and preparing the data for transfer. This data is then
processed and transformed into formats, for example, EPCIS events, and wrapped in universally accepted
formats like XML, PDF, and JSON. This conversion is critical to ensure seamless compatibility and data
integrity across different systems.

At the heart of this exchange is MQ based on Decentralized Identifiers (DIDs), establishing a secure
and verifiable link between the partners. This secure connection fosters reliability and maintains the
confidentiality and integrity of the shared data. The procedure further encompasses the exchange of keys
and the transfer of Data Sharing Units (DSUs) between the partners, an essential step for maintaining
robust access control and data security.

To guarantee the safe transit of this data, DID-based Message Queues (MQs) are utilised, ensuring
data protection throughout its journey. Upon reaching its destination, the data can be used or stored in
databases, while the original data from the DSU (the off-chain data) remains with the original creator. This
arrangement is connected to a Blockchain Network, which provides an immutable and traceable record of
all transactions and interactions involved in the data sharing.

The Blockchain Network, complemented by its nodes, strengthens the system, offering a
decentralised and secure environment. This framework not only bolsters the security of the data exchange
but also enhances the trust and reliability of the entire process.

With this chapter, we tried to offer a clear overview of how OpenDSU enables effective data
sharing and management of business process states between partners, underscoring the efficiency,
security, and dependability of this “pull-encrypted data when-needed” method of sharing & communication.

3

2. Internal Data Flows

Diagram 3: Typical Internal Data Flow

The typical flow for anchoring new data in DSUs inside of a company is illustrated in the diagram
above, highlighting that new entries in component 2 (Off-Chain DB) are initiated by component 1 (System of
Records) or component 8 (MQ message queue received from a partner). This process triggers the creation
and update of DSUs in component 3 (DSU Tokenization). This results in the creation of new bricks in
component 4 (Bricks Storage), functioning as Near-Chain in OpenDSU terminology, and also leads to
anchoring in the blockchain. Additionally, component 3 could add new keys in enclaves, which can be
either type 5 (Cloud-Enclaves) or type 6 (User-Wallets). These activities may also prompt further updates
and data requests to other partners since component 3 typically serves as an API that can handle any
necessary business processes.

The architecture assumes the use of MQs based on W3C DID for communication between
partners, supported by BDNS for routing to the appropriate partner. However, this is not mandatory, as
simple endpoint calls to partners can be easily implemented and can, in turn, use BDNS configurations to
determine the partner or partners that need to be notified.

4

3. Hosting resources

The following table estimates the hosting resources required for an OpenDSU-based solution.
Each component is evaluated based on its specifications and expected load. This resource estimation
helps plan the deployment and ensure the system's performance.

Component Resource Estimation

1 - System of Records
(ERPs)

It is not part of our specification

2 - Off-Chain DB By default, we use a very light, embedded database (called LightDB)
that saves data on files. However, a proper database is recommended
for complex use cases.

3 - DSU Tokenization These are custom APIs, and they must be planned according to the
expected volume.

4 - Bricks Storage
(Near-Chain)

It is a small set of APIs that depends on the expected load, the primary
factor being the size of the upload bricks in the specific use cases. Each
brick has a limit of 15 megabytes, but if many such bricks are
downloaded or uploaded, it will pressure server memory.

5 - Cloud-Enclaves The default one that can be used in APIs is very light, uses component
2 in a lazy mode, and has no special requirements.

6 - User-Wallets They are executed in browsers or mobile applications

7 - Business Intelligence It is not part of our specification

8 - MQs By default, the MQ is a small set of APIs that uses component 2 to store
messages. However, in complex use cases, it could be recommended
that a more sophisticated message queue be replaced.

9 - Blockchain The blockchain itself is not part of our specification. However,
depending on the blockchain technology, a particular server called a
“Blockchain Adapter " must be deployed for each blockchain type.
Typically, it is just a set of APIs around the blockchain SDK that adapt
the generic anchoring APIs expected by the OpenDSU SDK to the
actual smart contract.

Table 1: Hosting Resource Considerations
On the server side, OpenDSU can be executed on systems with minimal resources, depending

primarily on implementing custom APIs and the expected load on these APIs or components like the
Off-Chain DB, Bricks Storage, and anchoring. Proper planning and resource allocation for these
components will ensure efficient and scalable deployment of OpenDSU-based solutions.

For example, our previous testing in the PREQA and QA environments was successfully executed
using the Quorum blockchain on an AWS EC2 t3.large instance with the following specifications: vCPUs: 2,
Memory: 8 GiB, Network Performance: Up to 5 Gigabit. This demonstrates that even moderate cloud
instances can effectively handle the requirements of an OpenDSU-based solution. We recommend more
resources for production systems, but they must be tested for each cloud, infrastructure and use case.

5

